Quantifying Uncertainty in Estimation of Hydrologic Metrics for Ecohydrological Studies

نویسندگان

  • MARK J. KENNARD
  • STEPHEN J. MACKAY
  • BRADLEY J. PUSEY
  • JULIAN D. OLDEN
  • NICK MARSH
چکیده

Hydrologic metrics have been used extensively in ecology and hydrology to summarize the characteristics of riverine flow regimes at various temporal scales but there has been limited evaluation of the sources and magnitude of uncertainty involved in their computation. Variation in bias, precision and overall accuracy of these metrics influences the ability to correctly describe flow regimes, detect meaningful differences in hydrologic characteristics through time and space, and define flow-ecological response relationships. Here, we examine the effects of two primary factors—discharge record length and time period of record—on uncertainty in the estimation of 120 separate hydrologic metrics commonly used by researchers to describe ecologically relevant components of the hydrologic regime. Metric bias rapidly decreased and precision and overall accuracy markedly increased with increasing record length, but tended to stabilize>15 years and did not change substantially>30 years. We found a strong positive relationship between the degree of overlap of discharge record and similarity in hydrologic metrics when based on 15and 30-year discharge periods calculated within a 36-year temporal window (1965–2000), although hydrologic metrics calculated for a given stream gauge tended to vary only within a restricted range through time. Our study provides critical guidance for selecting an appropriate record length and temporal period of record given a degree of metric bias and precision deemed acceptable by a researcher. We conclude that: (1) estimation of hydrologic metrics based on at least 15 years of discharge record is suitable for use in hydrologic analyses that aim to detect important spatial variation in hydrologic characteristics; (2) metric estimation should be based on overlapping discharge records contained within a discrete temporal window (ideally >50% overlap among records); and (3) metric uncertainty varies greatly and should be accounted for in future analyses. Copyright # 2009 John Wiley & Sons, Ltd. key words: ecohydrology; discharge record length; discharge record period; accuracy; statistical power Received 18 August 2008; Revised 18 December 2008; Accepted 15 January 2009

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sensitivity and uncertainty analysis of sediment rating equation coefficients using the Monte-Carlo simulation (Case study: Zoshk-Abardeh watershed, Shandiz)

The sediment load estimation is essential for watershed management and soil conservation strategies. The sediment rating curve is the most common approach for estimating the sediment load when the observed sediment records are not available. With regard to the measurement errors and the limitation of available data, the sediment rating curve has a degree of uncertainty which should be accounted...

متن کامل

Estimating Uncertainty of Streamflow Simulation using Bayesian Neural Networks

Recent studies have shown that Bayesian Neural Networks (BNNs) are powerful tools for providing reliable hydrologic prediction and quantifying the prediction uncertainty. The reasonable estimation of the prediction uncertainty, a valuable for decision making to address water resources management and design problems, is influenced by the techniques used to deal with different uncertainty sources...

متن کامل

تخمین عدم قطعیت مدل شبیه سازی سیلاب HEC-HMS با استفاده از الگوریتم مونت کارلو زنجیره مارکوف

There are some parameters in hydrologic models that cannot be measured directly. Estimation of hydrologic model parameters by various approaches and different optimization algorithms are generally error-prone, and therefore, uncertainty analysis is necessary. In this study we used DREAM-ZS, Differential Evolution Adaptive Metropolis, to investigate uncertainties of hydrologic model (HEC-HMS) pa...

متن کامل

Prediction and evaluation of runoff data in south of Qazvin watershed, using a fuzzy logic technique

The important criteria for designing in the most of hydrologic and hydraulic construction projects are based on runoff or peak-flow of water. Mostly, this measure and criterion is calculated or estimated by stochastic data. Another feature of these data that are used in watershed hydrological studies is their impreciseness. Therefore, in this study, in order to deal with uncertainty and impreci...

متن کامل

Uncertainty in hydrologic modeling: Toward an integrated data assimilation framework

[1] Despite significant recent developments in computational power and distributed hydrologic modeling, the issue of how to adequately address the uncertainty associated with hydrological predictions remains a critical and challenging one. This issue needs to be properly addressed for hydrological modeling to realize its maximum practical potential in environmental decision-making processes. Ar...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010